Math, asked by razashibu1, 3 months ago

If 3 cot A=4,check whether 1-tan²A /1+tan²A=cos²A-sin²A or not



Answers

Answered by AnnMartin
3

HOPE U UNDERSTOOD !

MARK ME AS BRAINLIEST!!!!!

Attachments:
Answered by ItzHyunjin
2

Answer:

\huge\rm\red{ANSWER}

Let us consider a right triangle ABC in which B=90°.

Now,

 \bf{cot \:A =  \frac{Base}{Perpendicular  } =  \frac{AB}{ {BC} }   =  \frac{4}{3} }

Let AB=4k and BC=3k

By Pyhthagoras Theorem

AC² = AB² + BC²

AC²=(4k) ² + (3k) ²=16k² + 9k²

AC²=25k²

AC=5k

Therefore,

 \bf{tan A = \frac{Perpendicular}{Base}=\frac{BC}{AB}=\frac{3k}{4k}=\frac{3}{4}}

and,

 \bf{sin A = \frac{Perpendicular}{Hypotenuse }=\frac{BC}{AC}= \frac{3k}{4k}=\frac{3}{4}}

 \bf{cos A = \frac{Base}{Hypotenuse }=\frac{AB}{AC}=\frac{4k}{5k}=\frac{4}{5}}

Now,

\bf{LHS =\frac{1–tan² A}{1+tan² A}}

\bf{=\frac{1–(\frac{3}{4})²}{1–(\frac{3}{4})²}=\frac{1– \frac{9}{16}}{1+ \frac{9}{16}}= \frac{16–9}{16+9}= \frac{7}{25}}

\bf{RHS= cos² A–sin² A=(\frac{4}{5})² –(\frac{3}{5})² = \frac{16}{25} – \frac{9}{25} = \frac{7}{25}}

Hence,

[tex]\bf{\frac{1–tan²A}{1+tan²A}=cos²A –sin²A}[tex]

[tex]\huge\rm\blue{THANKYOU}[tex]

Attachments:
Similar questions