Math, asked by aviaviral2006, 6 hours ago

If 3 cot A = 4, evaluate 1−tan2A/1+tan2A

Answers

Answered by anjalin
1

Answer:

The value of \frac{1-tan2A}{1+tan2A} is \frac{-31}{17}

Step-by-step explanation:

Given:

CotA=\frac{3}{4} or TanA=\frac{4}{3}

We need to find the value of \frac{1-tan2A}{1+tan2A}

Let us find Tan2A first

The formula for Tan 2A is

Tan2A=\frac{2TanA}{1-Tan^2A}

By substituting the value we get :

Tan2A=\frac{2(\frac{4}{3} )}{1-(\frac{4}{3} )^2}\\\\Tan2A=\frac{\frac{8}{3} }{1-\frac{16}{9} } \\\\

Tan2A=\frac{\frac{8}{3} }{-\frac{7}{9} } \\\\Tan2A=\frac{8}{3} *\frac{-9}{7}\\\\Tan2A=\frac{-24}{7}

Substituting the value we get:

\frac{1-tan2A}{1+tan2A}=\frac{1-(\frac{-24}{7} ) }{1+(\frac{-24}{7} )}\\\\

=\frac{(\frac{7+24}{7} ) }{(\frac{7-24}{7} )}\\\\=\frac{(\frac{31}{7} ) }{(\frac{-17}{7} )}\\\\=\frac{-31}{17}

Similar questions