Math, asked by prathamchhangani, 1 year ago

if 3 cot a=4, find the values of cosec^2 a +1/cosec^2 a -1

Answers

Answered by ArchitectSethRollins
11
Hi friend
--------------
Your answer
--------------------

given \: that \:  -   \\  \\ 3 \cot(a)  = 4 \\  \\  =  >  \cot(a)  =  \frac{4}{3}  \\  \\ now \\  \\  \cot(a)  =  \:  \frac{base}{perpendicular}  \\  \\ so \\  \\ base = 4x \: and \: perpendicular \:  = 3x \\  \\ by \: pythgoras \: theorem  \:  \\  \\ (base) {}^{2}  + (perpendicular) {}^{2}  = (hypotenuse) {}^{2}  \\  \\  =  > (4x) {}^{2}  + (3x) {}^{2}  = (hypotenuse) {}^{2}  \\  \\  =  > (hypotenuse) {}^{2}  = 16x {}^{2}  + 9x {}^{2}   \\  \\  =  > (hypotenuse) {}^{2}  = 25 x {}^{2}  \\  \\  =  > hypotenuse =  \sqrt{25 x {}^{2}  }  =5 x \\  \\ then \\  \\  cosec(a) =  \frac{hypotenuse}{perpendicular}  =  \frac{5x}{3x}  =  \frac{5}{3}  \\  \\ now \\  \\  \frac{(cosec) {}^{2}a+ 1)}{(cosec) {}^{2} a- 1)}  \\  \\  =  >  \frac{ (\frac{5}{3} ) {}^{2} + 1 }{ (\frac{5}{3} ) {}^{2}  - 1}  \\  \\  =  >  \frac{ \frac{25}{9}  + 1}{ \frac{25}{9}  - 1}  \\  \\  =  >  \frac{ \frac{25  + 9}{9} }{ \frac{25 - 9}{9} }  \\  \\  =  >  \frac{34}{16}
HOPE IT HELPS
Similar questions