Math, asked by Anonymous, 9 months ago

if 3 cot A = 4cheack Whether 1-tan² A/1+tan²A =cos²A
-sin²A or not ​

Answers

Answered by Anonymous
4

Answer:

We have to prove that.......

1–tan²(45°–A)/1+tan(45°–A) = cosec2A

On taking L.H.S......

1–tan²(45°–A)/1+tan(45°–A)...........(1)

As we know that.....sec²A = 1+tan²A then from equation (1)

=>1–tan²(45°–A)/sec²(45°–A)

=>1/sec² (45°–A) – tan²(45–A)/sec²(45–A)

=>cos²(45–A) – sin²(45–A)

{ Because cosA = 1/secA and tanA/secA = sinA}

=>cos2(45°–A)

{ Because 1 – cos²A = sin2A }

=>sin(90°–2A)

=>cosec2A { Because sin(90–A) = cosecA }

= R.H.S.

Answered by Anonymous
44

 \huge\boxed{\fcolorbox{black}{pink}{answer}}

Given :-

3 \cot(A)  = 4

↪ \cot(A)  =  \frac{4}{3}↪ \frac{b}{p}  =  \frac{4}{3}

Let:-

 = B = 4k \:  \:  \: and \:  P = 3k

Where , K is any positve integer .

Draw a right angled ΔABC right angled at B .

[ Note :-Figure in Attachment ]

In right angled ΔABC , H²= P²+B² [by pytha. ]

 {H}^{2}  = { (3k)}^{2}  +  {(4k)}^{2}

◻ {9k}^{2}  +  {16k}^{2}  =  {25k}^{2}

◻ {h}^{2}  = 5k

Therefore :-

↪\tan(A)  =  \frac{1}{ \cot(A) }  =  \frac{3}{4}

↪\cos(A)  =  \frac{b}{h}  =  \frac{4k}{5k}  =   \frac{4}{5}

↪\sin(A)  =  \frac{p}{h}  =  \frac{3k}{5k}  =  \frac{3}{5}

Now LHS :-

↪\frac{1 -  \tan ^{2} (A) }{1 +  \tan ^{2} (A) }  =   \frac{ { 1 - (\frac{3}{4}) }^{2} }{ {1 + ( \frac{3}{4} )}^{2} }

[Since , Tan A = 3/4 ]

↪\frac{1 -  \frac{9}{16} }{1 +  \frac{9}{16} }  =  \frac{ \frac{16 - 9}{16} }{ \frac{16 + 9}{16} }  =  \frac{7}{5} ......(1eq)

RHS = Cos²A - Sin²A

↪( \frac{4}{5})^{2}  - ( { \frac{3}{5} )}^{2}  =  \frac{16}{25}  -  \frac{9}{25}  =  \frac{7}{25} .......(2eq)

From 1st and 2nd equation

LHS = RHS

↪ \frac{7}{25}  =  \frac{7}{25}

Hence Proved

Attachments:
Similar questions