Math, asked by reangprarthana, 3 months ago

if 3 cot theta = 4, show that ( 4 cos theta - sin theta)/(2cos theta + sin theta) = 4/5​

Answers

Answered by sharanyalanka7
5

Answer:

Step-by-step explanation:

Correct Question :-

If\:3cot\theta = 4\:then\:prove

\dfrac{4cos\theta-sin\theta}{2cos\theta+sin\theta}=\dfrac{13}{11}\\

Given,

3cot\theta = 4

To Show :-

\dfrac{4cos\theta-sin\theta}{2cos\theta+sin\theta}=\dfrac{13}{11}

Solution :-

As,\: 3cot\theta = 4

cot\theta=\dfrac{4}{3}

We know that :-

cot\theta=\dfrac{adjacent\:side}{opposite\:side}

Adjacent side = 4 , opposite side = 3

By applying pythagoras theorem We will get hypotenuse side = 5

\implies sin\theta=\dfrac{3}{5}

cos\theta=\dfrac{4}{5}

= \dfrac{4cos\theta-sin\theta}{2cos\theta+sin\theta}

=\dfrac{\left(4\times\dfrac{4}{5}\right)-\dfrac{3}{5}}{\left(2\times\dfrac{4}{5}\right)+\dfrac{3}{5}}

=\dfrac{\dfrac{16}{5}-\dfrac{3}{5}}{\dfrac{8}{5}+\dfrac{3}{5}}

=\dfrac{\dfrac{16-3}{5}}{\dfrac{8+3}{5}}

=\dfrac{\dfrac{13}{5}}{\dfrac{11}{5}}

=\dfrac{13}{11}

taking L.H.S :-

Similar questions