Math, asked by yadavavnishyadpactii, 1 year ago

if 3 cot theta equal to 4 then find sin theta + cos theta

Answers

Answered by Anonymous
0
I am using
 \alpha \: \: instead \: \: of \: theta

 \cot( \alpha ) = \frac{4}{3}
then

 \tan( \alpha ) = \frac{3}{4}

 \sin( \alpha ) + \cos( \alpha )

divided above eq by

 \cos( \alpha )

we get

 \binom{ \sin( \alpha + \cos( \alpha ) }{ \cos( \alpha ) }
 \binom{ \sin( \alpha ) }<br /><br /><br /><br /><br /><br />{ \cos( \alpha ) } + \binom{ \cos( \alpha ) }{ \cos( \alpha ) }

=>
 \tan( \alpha ) + 1

=>
 \frac{3}{4} + 1

=>
 \frac{7}{4}
Answered by Panzer786
2
3 Cot theta = 4




Cot ¢ = 4/3 = B/P



Base = 4 , Perpendicular = 3 , H = ?



H² = B² + P²



H² = 4² + 3²




H² = 16 + 9


H = √25



H = 5


Therefore,

Cos ¢ = B/H = 4/5


And,


Sin ¢ = P / H = 3 / 5.


Therefore,


Sin ¢ + cos ¢ = 3/5 + 4/5 = 7/5.
Similar questions