if 3 cot theta equal to 4 then find sin theta + cos theta
Answers
Answered by
0
I am using
![\alpha \: \: instead \: \: of \: theta \alpha \: \: instead \: \: of \: theta](https://tex.z-dn.net/?f=+%5Calpha+%5C%3A+%5C%3A+instead+%5C%3A+%5C%3A+of+%5C%3A+theta)
![\cot( \alpha ) = \frac{4}{3} \cot( \alpha ) = \frac{4}{3}](https://tex.z-dn.net/?f=+%5Ccot%28+%5Calpha+%29+%3D+%5Cfrac%7B4%7D%7B3%7D+)
then
![\tan( \alpha ) = \frac{3}{4} \tan( \alpha ) = \frac{3}{4}](https://tex.z-dn.net/?f=+%5Ctan%28+%5Calpha+%29+%3D+%5Cfrac%7B3%7D%7B4%7D+)
![\sin( \alpha ) + \cos( \alpha ) \sin( \alpha ) + \cos( \alpha )](https://tex.z-dn.net/?f=+%5Csin%28+%5Calpha+%29+%2B+%5Ccos%28+%5Calpha+%29+)
divided above eq by
![\cos( \alpha ) \cos( \alpha )](https://tex.z-dn.net/?f=+%5Ccos%28+%5Calpha+%29+)
we get
![\binom{ \sin( \alpha + \cos( \alpha ) }{ \cos( \alpha ) } \binom{ \sin( \alpha + \cos( \alpha ) }{ \cos( \alpha ) }](https://tex.z-dn.net/?f=+%5Cbinom%7B+%5Csin%28+%5Calpha+%2B+%5Ccos%28+%5Calpha+%29+%7D%7B+%5Ccos%28+%5Calpha+%29+%7D+)
![\binom{ \sin( \alpha ) }<br /><br /><br /><br /><br /><br />{ \cos( \alpha ) } + \binom{ \cos( \alpha ) }{ \cos( \alpha ) } \binom{ \sin( \alpha ) }<br /><br /><br /><br /><br /><br />{ \cos( \alpha ) } + \binom{ \cos( \alpha ) }{ \cos( \alpha ) }](https://tex.z-dn.net/?f=+%5Cbinom%7B+%5Csin%28+%5Calpha+%29+%7D%3Cbr+%2F%3E%3Cbr+%2F%3E%3Cbr+%2F%3E%3Cbr+%2F%3E%3Cbr+%2F%3E%3Cbr+%2F%3E%7B+%5Ccos%28+%5Calpha+%29+%7D+%2B+%5Cbinom%7B+%5Ccos%28+%5Calpha+%29+%7D%7B+%5Ccos%28+%5Calpha+%29+%7D+)
=>
![\tan( \alpha ) + 1 \tan( \alpha ) + 1](https://tex.z-dn.net/?f=+%5Ctan%28+%5Calpha+%29+%2B+1)
=>
![\frac{3}{4} + 1 \frac{3}{4} + 1](https://tex.z-dn.net/?f=+%5Cfrac%7B3%7D%7B4%7D+%2B+1)
=>
then
divided above eq by
we get
=>
=>
=>
Answered by
2
3 Cot theta = 4
Cot ¢ = 4/3 = B/P
Base = 4 , Perpendicular = 3 , H = ?
H² = B² + P²
H² = 4² + 3²
H² = 16 + 9
H = √25
H = 5
Therefore,
Cos ¢ = B/H = 4/5
And,
Sin ¢ = P / H = 3 / 5.
Therefore,
Sin ¢ + cos ¢ = 3/5 + 4/5 = 7/5.
Cot ¢ = 4/3 = B/P
Base = 4 , Perpendicular = 3 , H = ?
H² = B² + P²
H² = 4² + 3²
H² = 16 + 9
H = √25
H = 5
Therefore,
Cos ¢ = B/H = 4/5
And,
Sin ¢ = P / H = 3 / 5.
Therefore,
Sin ¢ + cos ¢ = 3/5 + 4/5 = 7/5.
Similar questions