If 3 cot thetha= 4 then 3sin thetha +4 cos thetha / 3 sin thetha - 4 cos thetha
Answers
Answer:
answer:-
3cotθ−4=0
cotθ=34
Now,3sinθ−2cosθ3sinθ+4cosθ
=sinθ[3−2sinθcosθ]sinθ[3+4sinθcosθ]
=3−2cotθ3+4cotθ
=3−2×343+4×34
=3−383+316=31325
Hence, =3sinθ−2cosθ3sinθ+4cosθ=25
Now, Consider
Hence,
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1