Math, asked by Rvtae, 8 months ago

If : √3 cot2Θ - 4 cot Θ + √3 = 0, then find the value of ( cot2Θ + tan2 Θ)

Answers

Answered by simarchogawa
0

Answer:

ye kon c class ka q hai ?

Answered by HarraBoy13
0

Answer:

\frac{10}{3}

Step-by-step explanation:

\sqrt{3} cot² θ - 4 cot θ + \sqrt{3} = 0

Let cot θ = x

then \sqrt{3} x^{2}  - 4x + \sqrt{3} = 0

which is a polynomial of the form ax^{2} + bx + c = 0

=> a = \sqrt{3, b = -4, c = \sqrt{3

=> x = \frac{-b}{2a}±\frac{\sqrt{b^{2} - 4ac}}{2a}

=> x = \frac{-(-4) +- \sqrt{(-4)^{2} - 4(\sqrt{3})(\sqrt{3})}}{2(\sqrt{3})}     (+- denotes ±) (Quadratic Formula)

=> x = \frac{4+- \sqrt{16 - 12}}{2\sqrt{3}}

=> x = \frac{4+- \sqrt{4}}{2\sqrt{3}}

=> x = \frac{4+- 2}{2\sqrt{3}}

=> x = \frac{2+- 1}{\sqrt{3}}

=> x = \frac{1}{\sqrt{3}}, \sqrt{3}

Then cot² θ + tan² θ:

= (\frac{1}{\sqrt{3}} )^{2} + (\sqrt{3})^{2} (or) (\sqrt{3})^{2} + (\frac{1}{\sqrt{3}})^{2}

= \frac{1}{3} + 3 (or) 3 + \frac{1}{3}

= \frac{10}{3}

Similar questions