Math, asked by sireesha61, 6 hours ago

if √3+I= r( cos teta +i sin teta) then find the value of teta in radian measure

Answers

Answered by varadad25
4

Answer:

The value of theta in radian measure is

\displaystyle{\sf\:\dfrac{\pi}{6}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\sqrt{3}\:+\:i\:=\:r\:(\:\cos\:\theta\:+\:i\:\sin\:\theta\:)}

We have to find the value of theta in radian measure.

Now,

\displaystyle{\sf\:z\:=\:\sqrt{3}\:+\:i}

Comparing with a + ib, we get,

\displaystyle{\sf\:a\:=\:\sqrt{3}}

\displaystyle{\sf\:b\:=\:1}

Now, we know that,

\displaystyle{\pink{\sf\:|\:z\:|\:=\:\sqrt{a^2\:+\:b^2}}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:\sqrt{(\:\sqrt{3}\:)^2\:+\:1^2}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:\sqrt{3\:+\:1}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:\sqrt{4}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:2}

\displaystyle{\therefore\:\sf\:r\:=\:2}

Now, we know that,

\displaystyle{\pink{\sf\:\arg\:z\:(\:\theta\:)\:=\:\tan^{-\:1}\:\left(\:\dfrac{b}{a}\:\right)}}

\displaystyle{\implies\sf\:\theta\:=\:\tan^{-\:1}\:\left(\:\dfrac{1}{\sqrt{3}}\:\right)}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\theta\:=\:\dfrac{\pi}{6}\:}}}}

∴ The value of theta in radian measure is

\displaystyle{\sf\:\dfrac{\pi}{6}}

Answered by llMrDeewanall
1

Step-by-step explanation:

Look at the attachment above.

I hope this helps you.

Attachments:
Similar questions