Math, asked by shinyhades, 17 days ago

If 3 is a root of the equation x^2-kx+42=0 find the value of k and root of the equation

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm \: 3 \: is \: the \: root \: of \: the \: equation \:  {x}^{2} - kx + 42 = 0 \\

Let assume that

\rm \:  \alpha , \beta  \: be \: the \: root \: of \: the \: equation \:  {x}^{2} - kx + 42 = 0 \\

So,

\rm \:  \alpha  = 3 \\

We know,

\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\

So,

\rm \:  \alpha  \times  \beta  = \dfrac{42}{1}  \\

\rm \: 3 \times  \beta  = 42 \\

\rm\implies \: \beta  = 14 \\

Now, we further know that

\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\

So,

\rm \:  \alpha  +  \beta  =  -  \: \dfrac{( - k)}{1}  \\

\rm \: 3 + 14 = k \\

\rm\implies \:k \:  =  \: 17 \\

So,

 \red{\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\sf{ \beta  \:  =  \: 14}  \\ \\ &\sf{k \:  =  \: 17} \end{cases}\end{gathered}\end{gathered}}

\rule{190pt}{2pt}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions