Math, asked by wwwswastimamagar, 2 months ago

if 3 is added to 2 times of a whole number is less than 11. Show in it inequality and solve it​..



plz help me to solve this question step by step

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let assume that whole number be x.

According to statement,

if 3 is added to 2 times of a whole number is less than 11.

So,

\rm :\longmapsto\:3 + 2x  <  11

On Subtracting 3, from both sides, we get

\rm :\longmapsto\:3 + 2x - 3  <  11 - 3

\rm :\longmapsto\:2x  < 8

\rm :\longmapsto\:x  < 4

As x is a whole number,

Therefore,

\rm :\longmapsto\:x \:  \in \:  \{0, \: 1, \: 2, \: 3 \}

Additional Information :-

Example :-

An integer is such that one third of the next integer is atleast 2 more than one fourth of the previous integer. Express it in inequality and hence solve it.

Solution :-

Let the integer be x.

According to statement,

One third of the next integer is atleast 2 more than one fourth of the previous integer.

\rm :\longmapsto\:\dfrac{x + 1}{3}  \geqslant \dfrac{x - 1}{4}  + 2

\rm :\longmapsto\:\dfrac{x + 1}{3}  \geqslant \dfrac{x - 1 + 8}{4}

\rm :\longmapsto\:\dfrac{x + 1}{3}  \geqslant \dfrac{x + 7}{4}

\rm :\longmapsto\:4x + 4 \geqslant 3x + 21

\rm :\longmapsto\:4x - 3x \geqslant \: 21 - 4

\rm :\longmapsto\:x \geqslant \: 17

\bf\implies \:x \:  \in \: [17, \:  \infty )

More about Inequality :-

 \red{ \boxed{ \sf{ \: x > y \:  \implies \:  - x <  - y}}}

 \red{ \boxed{ \sf{ \: x  <  y \:  \implies \:  - x  >   - y}}}

 \red{ \boxed{ \sf{ \: x   \geqslant   y \:  \implies \:  - x   \leqslant    - y}}}

 \red{ \boxed{ \sf{ \: x   \leqslant   y \:  \implies \:  - x   \geqslant    - y}}}

 \red{ \boxed{ \sf{ \:  |x|    \leqslant   y \:  \implies \:  - y \leqslant x \leqslant y}}}

 \red{ \boxed{ \sf{ \:  |x|    \geqslant   y \:  \implies \:  - y \geqslant x \geqslant y}}}

 \red{ \boxed{ \sf{ \:  |x - z|    \leqslant   y \:  \implies \:  z- y \leqslant x \leqslant z + y}}}

 \red{ \boxed{ \sf{ \: x > 0 \:  \implies \:  - x < 0}}}

Similar questions