If 3θ is the measure of an acute angle and sin3θ = cos(θ – 26), then find the value of θ.
Answers
Answered by
0
Given, sin3θ = cos(θ - 26°)
we know , cos(90° - θ) = sinθ
so, sin3θ = cos(90° - 3θ)
now, sin3θ = cos(90° - 3θ) = cos(θ - 26°)
cos(90° - 3θ) = cos(θ - 26°)
90° - 3θ = θ - 26°
4θ = 90° + 26°
4θ = 116°
θ = 29°
hence, value of θ = 29°
we know , cos(90° - θ) = sinθ
so, sin3θ = cos(90° - 3θ)
now, sin3θ = cos(90° - 3θ) = cos(θ - 26°)
cos(90° - 3θ) = cos(θ - 26°)
90° - 3θ = θ - 26°
4θ = 90° + 26°
4θ = 116°
θ = 29°
hence, value of θ = 29°
Answered by
0
Hi ,
Here I am using ' A ' instead of theta .
****************************************
Cos ( 90 - A ) = sin A
*****************************************
It is given that ,
sin 3A = cos ( A - 26 )
cos ( 90 - 3A ) = cos ( A - 26 )
90 - 3A = A - 26
90 + 26 = A + 3A
116 = 4A
A = 116/4
A = 29
I hope this helps you.
: )
Here I am using ' A ' instead of theta .
****************************************
Cos ( 90 - A ) = sin A
*****************************************
It is given that ,
sin 3A = cos ( A - 26 )
cos ( 90 - 3A ) = cos ( A - 26 )
90 - 3A = A - 26
90 + 26 = A + 3A
116 = 4A
A = 116/4
A = 29
I hope this helps you.
: )
Similar questions