if 3(log 5 - log 3) - (log 5 - 2 log 6)= 2 - log x,find x
Answers
Answer:
Given :
3(log5−log3)−(log5−2log6)=2−logn
Let us simplify the given expression to find n,
3log5−3log3−log5+2log6=2−logn
2log5−3log3+2log6=2(1)−logn
log5
2
−log3
3
+log6
2
=2log10−logn[Since,1=log10]
logn=−log25+log27−log36+log100
=(log100+log27)−log5+log36)
=log(100×27)−log(25×36)
=log(100×27)−log(25×36)
=log(100×27)/(25×36)
logn=log3
n=3
please mark brain list
Answer:
Given, 3(log5 - log3) - ( log5 - 2log6 ) = 2 -logx
We know that log a - log b = log a/b ---------- (1)
3 log 5/3 - log 5/6^2 + logx = 2
3 log 5/3 - log 5/36 + log x = 2
We know that a log(x) = log(x)^a
log (5/3)^3 - log 5/36 + log x = 2
log 125/27 - log 5/36 + log x = log 100
We know that log(a) - log(b) = log(a/b)
log 125 * 36 /5 * 27 + log x = log 100
log 100/3 + log x = log 100
We know that log(a + b) = log(ab)
log 100x/3 = log 100
x = 100 * 3/100
= 3.
x = 3.
Hope this helps!
Step-by-step explanation: