Math, asked by uxmani9883, 9 months ago

If 3 + log x base 10 is equal to 2 log y base 10 then find the value of x in terms of y

Answers

Answered by Anonymous
3

Given \:  \: Question \: Is \:  \\  \\ 3 +  log_{10}(x)  = 2 log_{10}(y)  \\ find \:  \: x \:  \: in \: terms \:  \: of \:  \: y \\  \\ Answer \:  \\  \\ 3 +  log_{10}(x)  = 2 log_{10}(y)  \\  \\ 3 +  log_{10}(x)  =  log_{10}(y {}^{2} ) \\ becoz \:  \:  log(n {}^{p} )  = p log(n)  \:  \\  \\ 3 +   log_{10}(x)  -  log_{10}(y {}^{2} )  = 0 \\  \\ 3 +   log_{10}( \frac{x}{y {}^{2} } ) =  0 \\ becoz \:  \: log(m) -  log(n)  =  log(  \frac{m}{n} )  \\  \\  log_{10}( \frac{x}{y {}^{2} } )  =  - 3 \\  \\  \frac{x}{y {}^{2} }  =  {10}^{ - 3}  \\  becoz \:  \: if \:  \:  log_{t}(r)  = d \:  \: then \:  \: r =  {t}^{d}  \\  \\ x = 10 {}^{ - 3} y {}^{2}  \\  \\ x =  \frac{y {}^{2} }{10 {}^{3} }  \\  \\ 10 {}^{3} x = y {}^{2}  \\  \\ y =  \sqrt{10 {}^{3} x}  \:  \:  \:  \:  \: or \:  \:   \:  \:  \: y =  -  \sqrt{10 {}^{3} x} \\  \\ therefore \: the \: required \:  relationship \: between \:  \\ x \: and \: y \: is \\  \\ y =  -  \sqrt{10 {}^{3} x}  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \: y =  \sqrt{10 {}^{3}x }

Similar questions