Math, asked by arneshbanerjee24, 1 day ago

If 3π < x < 4π and cosx =1/2. find the value cot (x/2)

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\mathsf{cosx=\dfrac{1}{2},\;\;3\pi&lt;x&lt;4\pi}

\underline{\textbf{To find:}}

\textsf{The value of}

\mathsf{cot\frac{x}{2}}

\underline{\textbf{Solution:}}

\mathsf{Since\;3\pi\;&lt;\;x\;&lt;\;4\pi,}

\mathsf{\dfrac{3\pi}{2}\;&lt;\;\dfrac{x}{2}\;&lt;\;\dfrac{4\pi}{2}}

\mathsf{\dfrac{3\pi}{2}\;&lt;\;\dfrac{x}{2}\;&lt;\;2\pi}

\implies\mathsf{\dfrac{x}{2}\;lies\;in\;fourth\;quadrant}

\mathsf{Using\;the\;identity,}

\boxed{\mathsf{tan^2\dfrac{x}{2}=\dfrac{1-cosx}{1+cosx}}}

\implies\mathsf{tan^2\dfrac{x}{2}=\dfrac{1-\dfrac{1}{2}}{1+\dfrac{1}{2}}}

\implies\mathsf{tan^2\dfrac{x}{2}=\dfrac{\dfrac{1}{2}}{\dfrac{3}{2}}}

\implies\mathsf{tan^2\dfrac{x}{2}=\dfrac{1}{3}}

\implies\mathsf{tan\dfrac{x}{2}=\pm\dfrac{1}{\sqrt{3}}}

\implies\mathsf{cot\dfrac{x}{2}=\pm\sqrt{3}}

\mathsf{Since\;\dfrac{x}{2}\;lies\;fourth\;quadrant,\;cot\dfrac{x}{2}\;is\;-ve}

\implies\boxed{\mathsf{cot\dfrac{x}{2}=-\sqrt{3}}}

\underline{\textbf{Find more:}}

If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

If 1+tan theta=√2 then cot theta-1=  

https://brainly.in/question/15088993

Answered by vaibhav13550
0

Answer:

Hope you get the correct answer.

Attachments:
Similar questions