Math, asked by renusinghpanwar291, 3 months ago

if (-3)^(m+1)×(-3)^5=(-3)^7 then the value of m is

Answers

Answered by Anonymous
19

Answer :-

\sf (-3)^{m+1} \times (-3)^5 = (-3)^7

Using the property of exponents :-

  • \sf a^m \times a^n = a^{m+n}

\implies\sf (-3)^{m+1+5} = -3^7

\implies\sf (-3)^{m+6} = -3^7

Now, here base are same. So, the power will also be same :-

\implies\sf m + 6 = 7

\implies\sf m = 7 - 6

\implies\sf m = 1

Verification :-

\sf LHS = (-3)^{m+1} \times (-3)^5

\implies\sf LHS = (-3)^{1 + 1} \times (-3)^5

\implies\sf LHS = (-3)^2 \times (-3)^5

\implies\sf LHS = (-3)^{2+5}

\implies\sf LHS = (-3)^7

\sf RHS = (-3)^7

LHS = RHS

Hence verified.

Additional information :-

\bf{\dag}\:\:\underline{\text{Law of Exponents :}}

\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}

\bigstar\:\:\sf{(a^m)^n = a^{mn}}

\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}

\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}

\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}

Answered by Anonymous
241

Answer:

GIVEN:

(-3)m + 1 × (-3)5 = (-3)7

TO FIND:

The value of m .

SOLUTION:

=> -3m + 1 × (-15) = (-3) × 7

=> -3m + ( -15 ) = -21

=> -3m -15 = -21

=> -3m = -21 + 15

=> -3m = -6

=> m = -6 / -3

=> m = 2

Hence,the value of m is 2

Similar questions