Math, asked by parthagarwala, 7 hours ago

if 3^p=4^q=12^-r, then find the value of (1/p)+(1/q)+(1/r)

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {3}^{p} =  {4}^{q} =  {12}^{ - r}

Let we assume that

\rm :\longmapsto\: {3}^{p} =  {4}^{q} =  {12}^{ - r} = k

We know,

\boxed{\tt{  {x}^{m} = y \:  \: \rm \implies\:3{\bigg(y \bigg) }^{\dfrac{1}{m} }}}

So, using this Law of exponents, we get

\red{\rm :\longmapsto\: {3}^{p} = k \:  \: \rm \implies\:3 =  {\bigg(k \bigg) }^{\dfrac{1}{p} } \: }

\red{\rm :\longmapsto\: {4}^{q} = k \:  \: \rm \implies\:4 =  {\bigg(k \bigg) }^{\dfrac{1}{q} } \: }

\red{\rm :\longmapsto\: {12}^{ - r} = k \:  \: \rm \implies\:12 =  {\bigg(k \bigg) }^{ - \dfrac{1}{r} } \: }

Now,

\rm :\longmapsto\:12 = {\bigg(k \bigg) }^{ - \dfrac{1}{r} }

can be rewritten as

\rm :\longmapsto\:4 \times 3 = {\bigg(k \bigg) }^{ - \dfrac{1}{r} }

\rm :\longmapsto\:{\bigg(k \bigg) }^{\dfrac{1}{p} } \times {\bigg(k \bigg) }^{\dfrac{1}{q} } = {\bigg(k \bigg) }^{ - \dfrac{1}{r} }

We know,

\boxed{\tt{ \:  \:   {x}^{p} \:  \times  \:  {x}^{q} \:  =  \:  {x}^{p \:  +  \: q}  \:  \: }}

So, using this, we get

\rm :\longmapsto\:{\bigg(k \bigg) }^{\dfrac{1}{p}  +  \dfrac{1}{q} } = {\bigg(k \bigg) }^{ - \dfrac{1}{r} }

\rm \implies\:\dfrac{1}{p}  + \dfrac{1}{q}  =  - \dfrac{1}{r}

\bf \implies\:\dfrac{1}{p}  + \dfrac{1}{q} +  \dfrac{1}{r}  = 0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\tt{ \:  \:   {x}^{p} \:   \div   \:  {x}^{q} \:  =  \:  {x}^{p \:   -   \: q}  \:  \: }}

\boxed{\tt{  {( {x}^{p} )}^{q} \:  =  \:  {x}^{pq} \: }}

\boxed{\tt{  {x}^{0} \:  =  \: 1 \: }}

\boxed{\tt{  {x}^{ - n} \:  =  \:  \frac{1}{ {x}^{n} } \: }}

Similar questions