if 3 power x=5 power x-2 then find the value of x
Answers
Answered by
0
Step-by-step explanation:
Given : Expression 3^x = 5^{x-2}3
x
=5
x−2
To find : Solve the expression ?
Solution :
3^x = 5^{x-2}3
x
=5
x−2
Taking log both the sides,
\log 3^x = \log 5^{x-2}log3
x
=log5
x−2
Applying logarithmic property, \log n^a = a \log nlogn
a
=alogn
x \log 3 = (x-2) \log 5xlog3=(x−2)log5
x \log 3 = x \log 5 - 2\log 5xlog3=xlog5−2log5
2\log 5 = x \log 5 - x \log 32log5=xlog5−xlog3
2 \log 5 = x (\log 5 - \log 3)2log5=x(log5−log3)
x=\frac{2 \log 5}{\log 5 - \log 3}x=
log5−log3
2log5
x=6.30x=6.30
Therefore, the value of x is 6.30.
Similar questions