Math, asked by riddhisinha, 1 year ago

If 3( power x ) = 5 ( power y) = 75 (power z ) . show that z = xy / (2x + y)

Answers

Answered by mysticd
5

Answer:

 Let \: 3^{x} = 5^{y} = 75^{z} = k

 3^{x} = k \implies 3 = k^{\frac{1}{x}} \: --(1)

 5^{y} = k \implies 5 = k^{\frac{1}{y}} \: --(2)

 75^{x} = k \implies 75 = k^{\frac{1}{z}} \: --(3)

 75 = k^{\frac{1}{z}}

\implies  3 \times 5^{2} = k^{\frac{1}{z}}

 \implies k^{\frac{1}{x}} \times \left(k^{\frac{1}{y}}\right)^{2} =  k^{\frac{1}{z}}

 \implies k^{\frac{1}{x}} \times k^{\frac{2}{y}} =  k^{\frac{1}{z}}

 \implies k^{\frac{1}{x} + \frac{2}{y}} = k^{\frac{1}{z}}

 \implies \frac{1}{x} + \frac{2}{y} = \frac{1}{z}

 \implies \frac{y+2x}{xy} = \frac{1}{z}

 \implies \frac{xy}{y+2x} = z

 Hence\: proved

•••♪

Answered by ankitsunny
4

Step-by-step explanation:

please mark has brainliest answer

Attachments:
Similar questions