Math, asked by arundhutiSPHS1658, 1 month ago

if 3 root 2 +2 root 3 \5root2-4root 3 =x-y root 6then find the value of x and y

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{3 \sqrt{2}  + 2 \sqrt{3} }{5 \sqrt{2}  - 4 \sqrt{3} }  = x - y \sqrt{6}

So, on rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{3 \sqrt{2}  + 2 \sqrt{3} }{5 \sqrt{2}  - 4 \sqrt{3} } \times \dfrac{5 \sqrt{2} + 4 \sqrt{3} }{5 \sqrt{2}  + 4 \sqrt{3} } = x - y \sqrt{6}

We know,

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this identity, we get

\rm :\longmapsto\:\dfrac{3 \sqrt{2}(5 \sqrt{2}+4 \sqrt{3}) + 2 \sqrt{3}(5 \sqrt{2} + 4 \sqrt{3})}{ {(5 \sqrt{2} )}^{2} -  {(4 \sqrt{3})}^{2}  }  = x - y \sqrt{6}

\rm :\longmapsto\:\dfrac{30 + 12 \sqrt{6}  + 10 \sqrt{6}  + 24}{50 - 48}  = x - y \sqrt{6}

\rm :\longmapsto\:\dfrac{54 + 22 \sqrt{6}}{2}  = x - y \sqrt{6}

\rm :\longmapsto\:\dfrac{2(27 + 11 \sqrt{6})}{2}  = x - y \sqrt{6}

\rm \implies\: \purple{27} +  \pink{11 \sqrt{6}} \:  =  \: \purple{x} -  \pink{y \sqrt{6}}

On Comparing, we get

\rm :\longmapsto\:\boxed{ \tt{ \: x = 27 \:  \: and \: y \:  =  \:  -  \: 11 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More :-

↝ More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions