Math, asked by anupamach123, 6 months ago

if 3- root 5 divided by 3+ 2×root 5= a root 5- b, find a and b. (where a and b are rational numbers)​

Answers

Answered by Anonymous
5

Answer:

a =  >  \frac{9}{11} \:  and \: b =  >  \frac{19}{11}

Step-by-step explanation:

 Since \:  the \: denominator =  \\ 3 + 2 \sqrt{5} \\ it's \: rationalizing \: factor =  \\ 3 - 2 \sqrt{5}  \\ Therefore, \\   \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  = \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  \times  \frac{3 - 2 \sqrt{5} }{3 - 2 \sqrt{5} }  \\  =   \frac{9 - 6 \sqrt{5}  - 3 \sqrt{5} + 10 }{(3) {}^{2} - (2 \sqrt{5}  ) {}^{2} }  \\  =  \frac{19 - 9 \sqrt{5} }{9 - 20}  =  \frac{19 - 9 \sqrt{5} }{ - 11}  \\  =  \frac{ -19 + 9 \sqrt{5}  }{11}   \\  =  \frac{9  \sqrt{5} - 19 }{11}  = >  \frac{9 \sqrt{5} }{11}  -  \frac{19}{11} \\ Given: \\  \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  = a \sqrt{5}  - b \\  =  >  \frac{9 \sqrt{5} }{11}  -  \frac{19}{11}  \\  =  > a =  \frac{9}{11}  \: \: and \: \: b =  \frac{19}{11}

Similar questions