Math, asked by 13022000, 1 year ago

if 3+root 7/3-4 root 7=a+b root 7 where a and b are rational numbers


13022000: pls fast..........
karthik4297: is ur question----3+root(7/3)-4.root(7)=(a+b)root7 ?
13022000: (3+root 7) divided by (3-4root7)=(a+b)root7
13022000: got it??
13022000: :)
karthik4297: what have to do?
13022000: solve it

Answers

Answered by kvnmurty
153
\frac{3+\sqrt7}{3 - 4 \sqrt7} = (a + b) \sqrt{7},\ \ \ \ cross-multiply, \\ \\ 3 + \sqrt7 = (3 - 4 \sqrt7)*[(a + b) \sqrt7] \\ \\

3 + \sqrt7 = (3a+3b)\sqrt7-4(a+b)\sqrt7*\sqrt7 \\ \\ 3 + \sqrt7 = (3a+3b) \sqrt{7} - (4a+4b)*7 \\ \\ 3+\sqrt7 = -(28a+28b) + (3a+3b)\sqrt7 \\ \\ equate\ rational\ and\ irrational\ parts \\ \\ 28a+28b = -3,\ \ \ \ and\ \ \ 3a +3b = 1 \\ \\ There\ is\ inconsistency\ as\ a+b=-3/28\ according\ to\ 1st\ equation \\ \\ a+b=1/3\ according\ to\ 2nd\ equation \\ \\ there\ is\ no\ solution

============================================

 If\ RHS\ =\ a + b\ \sqrt7,\ \ then, \\ \\ 3a-28b=3\ \ \ and\ 3b-4a=1 \\ \\ Solving\ we\ get \\ \\ b = -15/103\ \ and\ \ \ a = -37/103


kvnmurty: can u select as best answer. it took a lot of time and effort. least u can do is to select best answer. thanks for understanding.
Answered by Mathexpert
267
Consider LHS

 \frac{3+ \sqrt{7} }{3-4 \sqrt{7} }

 \frac{3+ \sqrt{7} }{3-4 \sqrt{7} } *  \frac{3+4 \sqrt{7} }{3+4 \sqrt{7} }

 \frac{9+12 \sqrt{7} + 3 \sqrt{7}+28  }{(3)^2 - (4 \sqrt{7})^2 }

 \frac{37+15 \sqrt{7}  }{9 - 112 }

 \frac{37+15 \sqrt{7}  }{-103 }

 \frac{-37}{103} -  \frac{15}{103} \sqrt{7}

 \frac{-37}{103} -  \frac{15}{103} \sqrt{7}  = a + b \sqrt{7}

On comparing both sides

a =  \frac{-37}{103};     b = -  \frac{15}{103}
Similar questions