Math, asked by Pearlnima, 1 year ago

If 3+root2/ 3-root2 = a+b root2 , find the values a and b

Answers

Answered by abhi569
475

Solving LHS:

\small{=>\frac{3+\sqrt2}{3-\sqrt2}}

Divide and multiply by \small{\frac{3+\sqrt2}{3+\sqrt2}}

\small{=>\frac{3+\sqrt2}{3-\sqrt2}\times \frac{3+\sqrt2}{3+\sqrt2} }\\\\\small{=> \frac{(3+\sqrt2)^2}{(3+\sqrt2)(3-\sqrt2)} } \\\\\small{=>\frac{3^2+(\sqrt2)^2+2(3)(\sqrt2)}{3^2 - (\sqrt2)^2} }\\\\\small{=>\frac{9+2+6\sqrt2}{9-2}}\\\\\small{=>\frac{11+6\sqrt2}{7}}

=>\frac{11}{7}+\small{\frac{6\sqrt2}{7}}

Matching the values

Then \frac{6\sqrt2}{7} =b√2 → (6/7) = b

→ 11/7 =a

Answered by smithasijotsl
7

Answer:

a = \frac{11}{7} and b = \frac{6}{7}

Step-by-step explanation:

Given,

\frac{3 + \sqrt{2} }{3 - \sqrt{2} } = a+b√2

To find,

The value of 'a' and 'b'

Recall the identities

  1. (a+b)² = a² +b² +2ab
  2. (a+b)(a-b) =a² - b²

Solution:

\frac{3 + \sqrt{2} }{3 - \sqrt{2} } = a+b√2

First, we need to rationalize the denominator. The rationalizing factor is 3+√2

Multiply the numerator and denominator with the rationalizing factor, and we get

\frac{3 + \sqrt{2} }{3 - \sqrt{2} } \ X \frac{3 + \sqrt{2} }{3 + \sqrt{2} } = \frac{(3+ \sqrt{2})^2 }{(3-\sqrt{2})(3+\sqrt{2})  }

Applying the identities (1) and (2)

\frac{(3+ \sqrt{2})^2 }{(3-\sqrt{2})(3+\sqrt{2})  }  = \frac{9+2+6\sqrt{2} }{9 - 2} = \frac{11+6\sqrt{2} }{7} = \frac{11}{7} + \frac{6\sqrt{2} }{7}

Hence we have,

\frac{3 + \sqrt{2} }{3 - \sqrt{2} } =  a+b√2 = \frac{11}{7} + \frac{6\sqrt{2} }{7}

Comparing the terms we get,

a = \frac{11}{7} and b = \frac{6}{7}

#SPJ2

Similar questions