If 3+ root5
\2 root5+3
= + 5 , find the value of rational numbers a and b.
Answers
Answered by
1
Answer:
Answer:
a = 9 and b = 19
Step-by-step explanation:
Given that :
\frac{3-\sqrt 5}{3+2\sqrt 5}=\frac{a\sqrt 5-b}{11}
3+2
5
3−
5
=
11
a
5
−b
Now, Taking L.H.S. first and the rationalizing the denominator we get :
\begin{gathered}\implies \frac{3-\sqrt 5}{3+2\sqrt 5}\\\\\implies \frac{3-\sqrt 5}{3+2\sqrt 5}\times \frac{3-2\sqrt 5}{3-2\sqrt 5}\\\\\implies \frac{9-6\sqrt 5-3\sqrt 5+2\times 5}{9-20}\\\\ \implies \frac{19-9\sqrt{5}}{-11}\\\\\implies \frac{9\sqrt 5-19}{11}\\\\\implies \frac{9\sqrt 5}{11}-\frac{19}{11}\end{gathered}
⟹
3+2
5
3−
5
⟹
3+2
5
3−
5
×
3−2
5
3−2
5
⟹
9−20
9−6
5
−3
5
+2×5
⟹
−11
19−9
5
⟹
11
9
5
−19
⟹
11
9
5
−
11
19
Now, Comparing the above expression with the R.H.S. We get ,
a = 9 and b = 19
Attachments:
Similar questions