Math, asked by anshrajsin1112, 1 day ago

If 3 sec (3x-21) = 2 , then the value of Sin²(x +13) + cot^2(x+13)​

Answers

Answered by saritakumarisinha47
1

Answer:

Find the value of x in the following:

2sin3x=

3

Medium

Solution

verified

Verified by Toppr

Given,

2sin3x=

3

sin3x=

2

3

we know that,

sin60

=

2

3

∴sin3x=sin60

3x=60

x=

3

60

x=20

Answered by krishnaanandsynergy
2

Answer:

Correct question is: \sqrt{3} sec (3x-21)\textdegree = 2, then the value of sin^2(x +13)\textdegree + cot^2(x+13)\textdegree

Final Answer:sin^2(x +13)\textdegree + cot^2(x+13)\textdegree=\frac{13}{4}

Step-by-step explanation:

The given question is, \sqrt{3} sec (3x-21)\textdegree = 2 using this one we should find the value of x.

             \sqrt{3} sec (3x-21)\textdegree = 2

                  sec (3x-21)\textdegree = \frac{2}{\sqrt{3}}

In trigonometric table, sec 30\textdegree=\frac{2}{\sqrt{3}}. Equate this value to the above equation.

                   sec (3x-21) \textdegree= \frac{2}{\sqrt{3}}=sec30\textdegree

                   sec (3x-21)\textdegree =sec30\textdegree

It can be written as,

                             3x-21 =30

                                     3x=30+21

                                      3x=51

                                        x=\frac{51}{3}

                                        x=17

Now we can solve sin^2(x +13) \textdegree+ cot^2(x+13)\textdegree

                                            =sin^2(x +13)\textdegree + cot^2(x+13)\textdegree

                                            =sin^2(17 +13)\textdegree + cot^2(17+13)\textdegree

                                            =sin^230\textdegree + cot^230\textdegree

                                            =(sin30\textdegree)^2 + (cot30\textdegree)^2

In trigonometric table, sin 30\textdegree=\frac{1}{2} and cot 30\textdegree=\sqrt{3}

                                             =(\frac{1}{2} )^2+(\sqrt{3} )^2    ⇒    (\frac{1}{2})^2=\frac{1}{4} and (\sqrt{3})^2=3

                                             =\frac{1}{4}+3

                                              =\frac{1+12}{4}

sin^2(x +13) \textdegree+ cot^2(x+13)\textdegree=\frac{13}{4}

Similar questions