If 3 sin + 5 cos = 5 , ℎ ( 3 cos − 5 sin ) 2
Answers
Answered by
1
Answer:
Answer
Given 3sinθ+5cosθ=5
Let 5sinθ−3cosθ=x
Squaring on both sides for both the equations
⇒9sin
2
θ+25cos
2
θ+30sinθcosθ=25
⇒25sin
2
θ+9cos
2
θ−30sinθcosθ=x
2
Adding the equations ;
⇒34(sin
2
θ+cos
2
θ)=25+x
2
⇒x
2
=34−25=9
⇒x=±3
∴5sinθ−3cosθ=±3
Hence proved.
Step-by-step explanation:
Answered by
0
Answer:
Given:
(3 sin0+5cos0)²= 5²
Squaring on both sides.
(3sin0)²+(5cose)²+2× 3sine 5cos0= 25
[a+b=a²+b²+2ab]
9sin²0+ 25cos²0+30sin0cos0= 25
9 (1-cos²0) + 25(1-sin²0)+30sincos0=25
[sin²0 + cos²0 =1]
9-9cos²0 +25-25sin²0 +30sin0cos0=25
9+25 -(9cos²0 +25sin²0 -30sin cose)
=25
34 - (9cos²0 +25sin²0 -30sinecos0) =25
- (25sin²0 +9cos²0-30sincos0) =25-34
(25sin²0+9cos²0 -30sin cose) =9
(5sine - 3cos0)²= 9
(5sin0 - 3cose)= √9
(5sin0 - 3cos0)= +3
L.H.S R.H.S
Similar questions