If 3 sin alpha minus 4 cos alpha =5 then prove that 3sin alpha +4cos Alpha =0
Answers
Answered by
10
Step-by-step explanation:
We have,
3sinθ+4cosθ=5 ………. (1)
On squaring both sides, we get
(3sinθ+4cosθ)
2
=5
2
9sin
2
θ+16cos
2
θ+24sinθcosθ=25
9(1−cos
2
θ)+16(1−sin
2
θ)+12×2sinθcosθ=25
9−9cos
2
θ+16−16sin
2
θ+12×2sinθcosθ=25
25−9cos
2
θ−16sin
2
θ+12×2sinθcosθ=25
9cos
2
θ+16sin
2
θ−12×2sinθcosθ=0
(3cosθ−4sinθ)
2
=0
3cosθ−4sinθ=0
Hence, the value is 0.
Similar questions