Math, asked by siddeshwar6556, 1 year ago

If 3 sin beta=sin(2 alpha+beta), then tan (alpha +beta)-2tan alpha is

Answers

Answered by sprao534
30
Please see the attachment
Attachments:
Answered by FelisFelis
8

Answer:

 \tan(\alpha + \beta)-2\tan \alpha=0

Step-by-step explanation:

We need to find \tan (\alpha + \beta)-2\tan \alpha

Given:- 3\sin \beta= \sin(2 \alpha + \beta)

As, 3\sin \beta= \sin(2 \alpha + \beta)

Divide both the sides by \sin \beta

3= \frac{\sin(2 \alpha + \beta)}{\sin \beta}

apply componendo and dividendo,

\frac{3+1}{3-1}= \frac{\sin(2 \alpha + \beta)+\sin \beta}{\sin(2 \alpha + \beta)-\sin \beta}

Since, \sin \alpha +\sin \beta = 2\sin(\frac{\alpha + \beta}{2})\cos(\frac{\alpha - \beta}{2})

and \sin \alpha -\sin \beta = 2\cos(\frac{\alpha + \beta}{2})\sin(\frac{\alpha - \beta}{2})

2= \frac{2\sin(\frac{2 \alpha + \beta+ \beta}{2})\cos \frac{(2 \alpha + \beta - \beta)}{2}}{2\cos(\frac{2 \alpha + \beta+ \beta}{2})\sin \frac{(2 \alpha + \beta - \beta)}{2}}

2= \frac{\sin(\alpha + \beta)\cos \alpha}{\cos(\alpha + \beta)\sin \alpha}

2= \frac{\tan(\alpha + \beta)}{\tan \alpha}

Multiply both the sides by \tan \alpha

2\tan \alpha = \tan(\alpha + \beta)

Subtract both the sides by 2\tan \alpha

 \tan(\alpha + \beta)-2\tan \alpha=0

Hence,  \tan(\alpha + \beta)-2\tan \alpha=0

Similar questions