English, asked by harivish5454, 9 months ago

if 3 sin theta + 5 cos theta equals to 5 find 5 sin theta minus 3 cos theta​

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{\pm3}}

Explanation:

Let the angle theta is denoted by angle alpha.

Now, its given that,

3 \sin( \alpha )  + 5 \cos( \alpha )  = 5 \:  \:  \:  \:  \: .......(1)

To find the value of,

  • 5 \sin( \alpha )  - 3 \cos( \alpha )

Lets assume that,

5 \sin( \alpha )  - 3 \cos( \alpha )  = x \:  \:  \:  \:  \: .........(2)

Now, squaring and adding eqn (1) and (2),

 =  >  {(3 \sin( \alpha ) + 5 \cos( \alpha ))  }^{2}  +  {(5 \sin( \alpha ) - 3 \cos( \alpha ))  }^{2}  =  {5}^{2}  +  {x}^{2}  \\  \\  =  > (9 { \sin }^{2}  \alpha  + 30 \sin \alpha  \cos \alpha  + 25 { \cos }^{2}  \alpha ) + (25 { \sin }^{2}  \alpha  - 30 \sin \alpha  \cos\alpha  + 9 { \cos }^{2}  \alpha ) = 25 +  {x}^{2}  \\  \\  =  > 34 { \sin}^{2}  \alpha  + 34 { \cos }^{2} \alpha   = 25 +  {x}^{2}  \\  \\  =  > 34( { \sin }^{2}  \alpha  +  { \cos }^{2}  \alpha ) = 25 +  {x}^{2}

But, we know that,

  •  { \sin }^{2}  \gamma  +  { \cos }^{2} \gamma  = 1

Therefore, we will get,

 =  >  34 \times 1 = 25 +  {x}^{2}  \\  \\  =  >  {x}^{2}  = 34 - 25 \\  \\  =  >  {x}^{2}  = 9 \\  \\  =  > x =  \pm3

Hence, the required value is \bold{\pm3}

Similar questions