If 3 sin theta + 5 cos theta is equal to 5 then prove that 5 sin theta minus 3 cos theta is equal to 3hat 5 sin theta minus 3 cos theta is equal
DarkFrost:
Please write question clearly
Answers
Answered by
9
Question :-
→ If ( 3sin θ + 5 cos θ ) = 5 , prove that ( 5 sin θ - 3 sin θ ) = ± 3 .
Answer :-
We have ,
→ ( 3 sin θ + 5cos θ )² + ( 5 sinθ - 3 cos θ )² .
= 9( sin²θ + cos²θ ) + 25( sin²θ + cos²θ ) .
= ( 9 + 25 ) .
= 34 .
∴ ( 3 sin θ + 5 sin θ )² + ( 5 sin θ - 3 cos θ )² = 34 .
⇒ 5² + ( 5 sin θ - 3 cos θ )² = 34 . [ ∵ 3 sin θ + 5 cos θ = 5 ]
⇒ 25 + ( 5 sin θ - 3 cos θ )² = 34 .
⇒ ( 5 sin θ - 3 cos θ )² = 34 - 25 .
⇒ ( 5 sin θ - 3 cos θ )² = 9 .
⇒ ( 5 sin θ - 3 cos θ ) = ±√9 .
⇒ ( 5 sin θ - 3 cos θ ) = ± 3 .
Hence, ( 5 sin θ - 3 cos θ ) = ± 3 .
Answered by
3
Step-by-step explanation:
MARK AS BRAINLIST
HOPE IT WILL HELP U
THANK YOU
Attachments:
Similar questions