if √3 sinA -- cosA =0 ,then show that
tan3A= 3 tanA - tan(cube) A /(divide by) 1--3tan ( square)A
Attachments:
Answers
Answered by
133
Step-by-step explanation:
√3 sinΦ - cosΦ = 0
To prove : tan 3Φ = (3tanΦ - tan³Φ)/(1 - 3tan²Φ)
Now,
√3 sinΦ - cosΦ = 0
=> √3 sinΦ = cosΦ
Dividing cosΦ both sides :
=> √3 tanΦ = 1
=> tanΦ = 1/√3
=> tanΦ = tan30°
=> Φ = 30°
Here,
tan 3Φ = (3tanΦ - tan³Φ)/(1 - 3tan²Φ)
tan 3 × 30° = {3 × 1/3√3 - (1/√3)³} /{1 - 3 × (1/√3)²}
tan 90° = {√3 - 1/3√3}/{1 - 3 × 1/3}
∞ = {√3 - 1/3√3}/{1 - 1}
∞ = {√3 - 1/3√3}/0
∞ = ∞
Hence, proved
Similar questions