if 3 sinx + 4 cosx = 5 show that
3 cosx - 4 sinx = 0
Answers
Answered by
1
hey friend
here is your answer
ANS 3sinx+4cosx=5
=> 3/5 sinx +4/5 cosx = 1
let cosA=3/5 => sinA=4/5
=> cosAsinx + sinAcosx = 1
=> sin(x+A) = 1
Now,
4sinx - 3cosx
= 5(4/5sinx - 3/5 cosx) [multipying numerator and denominator by 5]
= 5(sinAsinx - cosAcosx)
= -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0 Ans 0
plz mark me as brainliest
here is your answer
ANS 3sinx+4cosx=5
=> 3/5 sinx +4/5 cosx = 1
let cosA=3/5 => sinA=4/5
=> cosAsinx + sinAcosx = 1
=> sin(x+A) = 1
Now,
4sinx - 3cosx
= 5(4/5sinx - 3/5 cosx) [multipying numerator and denominator by 5]
= 5(sinAsinx - cosAcosx)
= -5{cos(x+A)} = -5[root{1-(sin(x+A)^2)}] = -5 x 0 = 0 Ans 0
plz mark me as brainliest
bandgar110:
maine sirf side shift ki hai taki wo aur convinient ho sake
Similar questions