Math, asked by umairkhan50, 7 months ago


If 3 tan (0 – 15°) = tan (0 + 15°), 0 < 0 < 90°, then prove that 0 = 45°.​

Answers

Answered by shauryagupta6962
0

Answer:

Solution -

3tan(θ−15

)=tan(θ+15

)

3=

tan(θ−15

)

tan(θ+15

)

3−1

3+1

=

tan(θ+15

−tan(θ−15

)

tan(θ+15

)+tan(θ−15

)

2=

cos(θ+15

)

sin(θ+15

)

cos(θ−15

)

sin(θ−15

)

cos(θ+15

)

sin(θ+15

)

+

cos(θ−15

)

sin(θ−15

)

2=

sin(θ+15

)cos(θ−15

)−sin(θ−15

)cos(θ+15

)

sin(θ+15

)cos(θ−15

)+sin(θ−15

)cos(θ+15

)

Apply sin(A+B)=sinAcosB+cosAsinB

sin(A−B)=sinAcosB−cosAsinB

2=

sin(30

)

sin(2θ)

sin2θ=1

2θ=2nπ+

2

π

θ=nπ+

4

π

in 0<θ<90

−θ=45

Similar questions