Math, asked by noone76, 2 months ago

. If √3 tan ● =1 then evaluate (cos^2 ● - sin^2 ●). imagine● as pheta​

Answers

Answered by santanath77
1

Answer:

Correct option is

A

0.5

3

tanθ=1

⇒tanθ=

3

1

⇒θ=60°

∴sin

2

θ−cos

2

θ=sin

2

θ−cos

2

θ

=(

2

3

)

2

−(

2

1

)

2

=

4

3

4

1

=

2

1

Hence, the answer is 0.5.

Answered by Anonymous
3

Answer:

\red {Value \: of \: sin^{2}\theta - cos^{2}\theta }\green {= \frac{ \sqrt{3}-1}{2}}

Step-by-step explanation:

Given \: \sqrt{3} \:  tan\theta = 1

\implies tan \theta = \frac{1}{\sqrt{3}}\:

\implies tan\ \: theta = tan \:  30

\implies \theta = 30\degree

</p><p>\red {Value \: of \: sin2\theta - cos2\theta }

\begin{gathered} = sin 2\times 30 - cos 2\times 30 \\= sin 60 - cos 60\\= \frac{\sqrt{3}}{2} - \frac{1}{2}\\= \frac{ \sqrt{3}-1}{2}\end{gathered}

Therefore,</p><p></p><p>\red {Value \: of \: sin2\theta - cos2\theta }  \\ Valueofsin2θ−cos2θ</p><p></p><p>\green {= \frac{ \sqrt{3}-1}{2}}

Similar questions