Math, asked by karunasree554, 8 months ago

if √3 tan= 1 then find and write complementary angle of it.​

Answers

Answered by akashtonger9299
1
tan@=tan30
@=30

Then complement angle of 30
Answered by Anonymous
2

Solution:-

:  \implies \: \:  \rm \: if \:   \sqrt{3}  \tan \theta = 1

 : \implies  \rm \tan\theta =  \dfrac{1}{ \sqrt{3} }  =  \dfrac{p}{b}=30⁰

 

Using phythogoeros theorem

 :   \implies \rm \: p = 1 \:  \: b =  \sqrt{3}  \:  \: and \:  \: h = x

 :  \implies \rm \:  {h}^{2}  =  {p}^{2}  +  {b}^{2}

 :  \implies \rm {x}^{2}  =  {1}^{2}  +  (\sqrt{3} ) {}^{2}

 :  \implies \:  \rm  {x}^{2}  = 1 + 3

  :  \implies \:  \rm {x}^{2}  = 4

  :  \implies \:  \rm \: x = 2 = h

 :   \implies \rm \: p = 1 \:  \: b =  \sqrt{3}  \:  \: and \:  \: h = 2

All  complementary angle  are

 : \implies \rm \sin\theta = \dfrac{p}{h}  = \dfrac{1}{2}

  :  \implies \rm \cos \theta =  \dfrac{b}{h}  =  \dfrac{  \sqrt{3}  }{2}

 :  \implies \rm \tan\theta =  \dfrac{p}{b}  =  \dfrac{1}{ \sqrt{3} }

 :  \implies \rm \csc \theta =  \dfrac{h}{p}  =  \dfrac{2}{1}

 :  \implies \rm \sec\theta  =  \dfrac{h}{b}  =  \dfrac{2}{ \sqrt{3} }

 :  \implies   \rm \: \cot \theta =  \dfrac{b}{p}  =  \dfrac{ \sqrt{3} }{1}

Similar questions