Math, asked by bethu3466, 5 months ago

If √3 tan θ = 1, then find the value of sin² θ – cos²θ​

Answers

Answered by gurkiratpb10kaur
2

Answer:

I hope it help you and you understand question

Attachments:
Answered by harshar042005
0

Given: √3 tan θ = 1

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3)

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ,

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° =

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° = (1/2)2 – (√3/2)2 = 1/4 - 3/4 = -2/4

Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° = (1/2)2 – (√3/2)2 = 1/4 - 3/4 = -2/4 = -1/2❤️❤️❤️❤️❤️

Similar questions