If √3 tan θ = 1, then find the value of sin² θ – cos²θ
Answers
Answered by
2
Answer:
I hope it help you and you understand question
Attachments:
Answered by
0
Given: √3 tan θ = 1
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3)
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ,
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° =
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° = (1/2)2 – (√3/2)2 = 1/4 - 3/4 = -2/4
Given: √3 tan θ = 1 ⇒ tan θ = 1/√3 ⇒ θ = tan-1 (1/√3) [Taking tan inverse] ⇒ θ = 30° To find value of sin2 θ – cos2 θ, substitute value of θ We get, sin2 30° - cos230° = (1/2)2 – (√3/2)2 = 1/4 - 3/4 = -2/4 = -1/2❤️❤️❤️❤️❤️
Similar questions
English,
2 months ago
Accountancy,
5 months ago
Math,
5 months ago
Biology,
11 months ago
Hindi,
11 months ago