IF √3 tanΘ = 3 sinΘ , find the value of sin²Θ - Cos²Θ.
Answers
Answered by
0
Answer:
Required value of sin^2 A - cos^2 A is 1 / 3.
Step-by-step explanation:
Given,
√3 tanA = 3 sinA
= > √3 tanA = 3 sinA
= > √3 = 3 sinA / tanA
= > √3 = 3 sinA x cosA / sinA
= > √3 = 3 cosA
= > 3 = 9 cos^2 A { square on both sides }
= > 3 / 9 = cos^2 A
= > 1 / 3 = cos^2 A
= > 2 / 3 = 2 cos^2 A
= > - 2 / 3 = - 2 cos^2 A
= > 1 - 2 / 3 = 1 - 2 cos^2 A
= > ( 3 - 2 ) / 3 = 1 - cos^2 A - cos^2 A
= > 1 / 3 = sin^2 A - cos^2 A { 1 - cos^2 B = sin^2 B }
Hence the required value of sin^2 A - cos^2 A is 1 / 3.
Answered by
1
Answer:
√3 tanO = 3 SinO
TanO = √3 SinO
squaring
tan^2O = 3 sin^2O
sin^2O/cos^2O = 3 sin^2O
cos^2O = 1/3
sin^2O = 1-1/3 = 2/3
sin^2O - cos^2O
= 2/3-1/3
= 1/3
Similar questions