Math, asked by reshmazakir0123, 11 months ago

If 3 tanθ =4. Find all the trygnometric ratio​

Answers

Answered by ItsMysteriousGirl
2

Question:

If 3 tanθ =4. Find all the trignometric ratios.

Solution:

3tanθ = 4 \\ tanθ =  \frac{4}{3}  =  \frac{opposite \: side}{adjacent \: side}   \\ In \:  \triangle ABC \:  by ,  \: Pythagoras \:  theorem \\ AB^2+BC^2=AC^2 \:  \\  {(4)}^{2}  +  {(3)}^{2}  = AC^2 \\ AC^2 = 16 + 9 \\ AC^2 = 25 \\ AC= 5

From Figure,

sinθ = \frac{opposite \: side}{hypotenuse}  =  \frac{4}{5}   \\ cosθ =  \frac{adjacent \: side}{hypotenuse}   =  \frac{3}{5} \\ cosecθ =   \frac{hypotenuse}{opposite \: side}  =  \frac{5}{4} \\ secθ =  \frac{hypotenuse}{adjacent \: side}  =  \frac{5}{3}  \\ cotθ =  \frac{adjacent \: side}{opposite \: side}  =  \frac{3}{4}

_______________________

Attachments:
Answered by Anonymous
19

ANSWER:-

Given:

If 3 tan Ф= 4.

To find:

All the trignometric  ratio.

Explanation:

tanФ= \frac{4}{3}

tanФ= \frac{Perpendicular}{Base}

  • Perpendicular= 4
  • Base= 3
  • Hypotenuse= ?

Using Pythagoras Theorem:

[Hypotenuse]² = [Base]² + [Perpendicular]²

[Hypotenuse]²= (3)² + (4)²

[Hypotenuse]²= 9 + 16

[Hypotenuse]²= 25

Hypotenuse= √25

Hypotenuse= 5

Now,

All the trignometric ratio:

  • sinФ= \frac{P}{H} = \frac{4}{5}
  • cosФ= \frac{B}{H}= \frac{3}{5}
  • tanФ= \frac{P}{B} = \frac{4}{3}
  • cotФ= \frac{B}{P} =\frac{3}{4}
  • secФ= \frac{H}{B} = \frac{5}{3}
  • cosecФ= \frac{H}{P} = \frac{5}{4}

Note:

The value of sinФ, cosФ, tanФ etc, depends on the angleФ, not on the size of the right angled Δ.

Similar questions