If 3 tanθ =4. Find all the trygnometric ratio
Answers
Answered by
2
Question:
If 3 tanθ =4. Find all the trignometric ratios.
Solution:
From Figure,
_______________________
Attachments:
Answered by
19
ANSWER:-
Given:
If 3 tan Ф= 4.
To find:
All the trignometric ratio.
Explanation:
tanФ=
tanФ=
- Perpendicular= 4
- Base= 3
- Hypotenuse= ?
Using Pythagoras Theorem:
[Hypotenuse]² = [Base]² + [Perpendicular]²
[Hypotenuse]²= (3)² + (4)²
[Hypotenuse]²= 9 + 16
[Hypotenuse]²= 25
Hypotenuse= √25
Hypotenuse= 5
Now,
All the trignometric ratio:
- sinФ=
- cosФ=
- tanФ=
- cotФ=
- secФ=
- cosecФ=
Note:
The value of sinФ, cosФ, tanФ etc, depends on the angleФ, not on the size of the right angled Δ.
Similar questions