Math, asked by manohar131292, 11 months ago

If 3 tan A=4, then find sin A and cos A.​

Answers

Answered by ishanp240603
3

Step-by-step explanation:

3 \tan\alpha  = 4 \\  =  >  \tan\alpha  =  \frac{4}{3}  \\  \\ we \: know \:  { \sec\alpha  }^{2}  -  { \tan\alpha  }^{2} = 1 \\  \\ { \sec\alpha  }^{2}  -  { (\frac{4}{3}) }^{2}  = 1 \\  =  >  { \sec\alpha  }^{2}  = 1 +  \frac{16}{9}  \\  =  >  { \sec\alpha }^{2}  =  \frac{25}{9 }  \\  =  >  { \sec \alpha  }^{}  =  \frac{5}{3}  \\  =  >  \cos \alpha  =  \frac{3}{5}  \\  \\ we \: also \: know \:  { \sin\alpha  }^{2}  +  { \cos \alpha }^{2}  = 1 \\  \\  { \sin \alpha }^{2}  = 1 -  \frac{9}{25}  \\  =  >  { \sin\alpha }^{2}  =  \frac{16}{25}  \\  =  >  \sin\alpha  =  \frac{4}{5}

I hope my answer is satisfiable

if my answer is up to your mark then mark it as brainliest answer

follow me for more

don't forget to like

Answered by BrainlyKingdom
0

Question

If 3 tan A = 4, Then Find sin A and cos A

\rule{350}{1}

3 tan A = 4

⇒ (3 tan A)/3 = 4/3

⇒ tan A = 3/4

⇒ Opposite / Adjacent = 3/4

Comparing This We get

  • Opposite = 3 & Adjacent = 4

We also need to get Hypotenuse to find sin A and cos A

(Hypotenuse)² = (Opposite)² + (Adjacent)²   .....(By Pythagoras Theorem)

⇒ (Hypotenuse)² = 3² + 4²

⇒ (Hypotenuse)² = 9 + 16

⇒ (Hypotenuse)² = 25

⇒ Hypotenuse = √25

⇒ Hypotenuse = 5

\rule{350}{1}

sin A = Opposite / Hypotenuse

⇒ sin A = 3/5

cos A = Adjacent / Hypotenuse

⇒ cos A = 4/5

Similar questions