If 3 tan A = 4, then find sin A and cos A ?
Answers
Answered by
10
given
3tanA =4
tan A = 4/3
tan A = perpendicular /base
perpendicular = 4
base = 3
by Pythagoras theorem
(hypotenuse)²= (perpendicular)²+(base)²
(hypotenuse)² = (4)²+(3)² = 16+9 = 25
hypotenuse =± 5
thus sinA = perpendicular/hypotenuse
= ±3/5
cosA = base /hypotenuse
= ±4/5
3tanA =4
tan A = 4/3
tan A = perpendicular /base
perpendicular = 4
base = 3
by Pythagoras theorem
(hypotenuse)²= (perpendicular)²+(base)²
(hypotenuse)² = (4)²+(3)² = 16+9 = 25
hypotenuse =± 5
thus sinA = perpendicular/hypotenuse
= ±3/5
cosA = base /hypotenuse
= ±4/5
Answered by
0
→3tan A = 4.
→3tan A = 4.→tan A 4/3
→3tan A = 4.→tan A 4/3→P/ b = tan A
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,→sin A = P/h
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,→sin A = P/h→sin A = 3/5
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,→sin A = P/h→sin A = 3/5→ cos A = b/h
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,→sin A = P/h→sin A = 3/5→ cos A = b/h→cos A = 4/5
→3tan A = 4.→tan A 4/3→P/ b = tan A→perpendicular(p) = 4, Base(b)= 3 BY PYTHAGORES THEOREME :→h² = p² + b² [h = hypotenous]→h² = {4}² + {3}²→ h² = 16 + 9→h² = 25→h=√25→(h = 5)NOW,,,→sin A = P/h→sin A = 3/5→ cos A = b/h→cos A = 4/5→HOPE IT HELPS ...
→ Thanks
Similar questions