If 3 tan A =4, then value of √1-sin A/1+cos A is
Answers
Answered by
30
3tanA = 4
tanA = 4/3 = perpendicular/base
so, perpendicular = 4
and base = 3
from Pythagoras theorem,
hypotenuse = √(3² + 4²) = 5
now , sinA = perpendicular/hypotenuse = 4/5
cosA = base/hypotenuse = 3/5
so,
=
=
=
tanA = 4/3 = perpendicular/base
so, perpendicular = 4
and base = 3
from Pythagoras theorem,
hypotenuse = √(3² + 4²) = 5
now , sinA = perpendicular/hypotenuse = 4/5
cosA = base/hypotenuse = 3/5
so,
=
=
=
Answered by
11
3 Tan A = 4
Tan A = 4/3 = P / B
Perpendicular = 4 and Base = 3.
By Pythagoras theroem ,
( Hypotenuse )² = ( Perpendicular)² + ( Base)²
( H )² = (4)² + (3)²
( H )² = 16 + 9
H = √25 = 5
Therefore,
Sin A = Perpendicular / Hypotenuse = 4/5
And,
Cos A = Base / Hypotenuse = 3/5
Therefore,
√ 1 - SinA / 1 + CosA = √ 1 - 4/5 / 1 + 3/5
=> √5-4/5 / 5 + 3 / 5
=> √1/5 / 8 / 5
=> √ 1/5 × 5/8
=> √1/8
=> √1/2×2×2
=> √1/2√2.
Tan A = 4/3 = P / B
Perpendicular = 4 and Base = 3.
By Pythagoras theroem ,
( Hypotenuse )² = ( Perpendicular)² + ( Base)²
( H )² = (4)² + (3)²
( H )² = 16 + 9
H = √25 = 5
Therefore,
Sin A = Perpendicular / Hypotenuse = 4/5
And,
Cos A = Base / Hypotenuse = 3/5
Therefore,
√ 1 - SinA / 1 + CosA = √ 1 - 4/5 / 1 + 3/5
=> √5-4/5 / 5 + 3 / 5
=> √1/5 / 8 / 5
=> √ 1/5 × 5/8
=> √1/8
=> √1/2×2×2
=> √1/2√2.
Similar questions