if 3 tan A= 5 then find sin A and cos A
Answers
Answer:
sinA = 5/√34
cosA=3/√34
Step-by-step explanation:
Given that 3tanA = 5 . Then ,
=> 3tanA=5.
=> tanA = 5/3 .
Now , if we consider a right angled ∆ABC in which tanA = 5/3 and tan∅=perpendicular/base.
So , hypontenuse will be :
=> hypontenuse ²=base²+perp.²
=>hypontenuse ²=3²+5².
=>hypontenuse ²=9+25
=>hypontenuse ²=34.
=>hypontenuse=√34.
And we know sinA = perp./hypontenuse= 5/√34.
and cosA=base/hypontenuse= 3/√34.
Step-by-step explanation:
QUESTION.....
If 3 tan A=4, then find sin A and cos A
ANSWER......
LET ABC is a right angle triangle
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theorem
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5 sinA=HypotenuseOpposite side of∠A
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5 sinA=HypotenuseOpposite side of∠A =ACBC=54
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5 sinA=HypotenuseOpposite side of∠A =ACBC=54 ∴cosA=HypotenuseAdjacent side of∠A
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5 sinA=HypotenuseOpposite side of∠A =ACBC=54 ∴cosA=HypotenuseAdjacent side of∠A =ACAB=53
C is a right angle triangle 3tanA=4 ⇒tanA=34=ABBC By using Pythagoras theoremAC2=AB2+BC2 =(3)2+(4)2 =9+16=25 ∴AC=25=5 sinA=HypotenuseOpposite side of∠A =ACBC=54 ∴cosA=HypotenuseAdjacent side of∠A =ACAB=53 ∴sinA= ⅘ and cosA= ⅘.