Math, asked by lussifer6335, 5 months ago

If 3 tan A =cot A and A is an acute angle find angle A

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{3\;tanA=cotA}

\underline{\textbf{To find:}}

\textsf{The angle A}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{3\;tanA=cotA}

\implies\mathsf{3\;tanA=\dfrac{1}{tanA}}

\implies\mathsf{tan^2A=\dfrac{1}{3}}

\implies\mathsf{tanA=\pm\dfrac{1}{\sqrt3}}

\mathsf{Since\;A\;is\;acute,\;tanA\;is\;positive}

\implies\mathsf{tanA=\dfrac{1}{\sqrt3}}

\implies\boxed{\mathsf{A=30^\circ}}

\underline{\textbf{Answer:}}

\mathsf{The\;value\;of\;A\;is\;30^circ}

\underline{\textbf{Find more:}}

Answered by jaswasri2006
1

 \sf3 \tan A =  \cot A

 \sf 3 \tan A =  \frac{1}{ \tan A}

 \sf  {\tan}^{2} A =  \frac{1}{3}

 \sf \tan A =  \pm \frac{1}{ \sqrt{3} }

 \bf  \therefore   \: \color{darkblack}{ A = 30\degree}

Similar questions