If 3 tan square thita-4√3 tan thita+3=o then find value of angle thita
Answers
Here in this question, concept of factorisation as well as Trigonometric ratios is used. This could be a much complicated question if you don't know correct order to solve this question. We are given a quadratic equation in the form of trigonometric terms and we are asked to find value of theta(). To find the value of firstly we will find the value of tan
So let's find out!!
_________________________________
★ Solution :-
Now we have obtained 2 values of tan theta.
We know that tan60°=√3 and tan30°=.
So the possible values of theta are 30° and 60°.
Here I have used middle term splitting for finding value of tan theta, you can also use quadratic formula for finding it.
_________________________________
Trigonometry ratios:
Answer:
\Large{\underbrace{\underline{\sf{Understanding\: the\; Concept}}}}
UnderstandingtheConcept
Here in this question, concept of factorisation as well as Trigonometric ratios is used. This could be a much complicated question if you don't know correct order to solve this question. We are given a quadratic equation in the form of trigonometric terms and we are asked to find value of theta(\thetaθ ). To find the value of \:\theta\:θ firstly we will find the value of tan\thetaθ
So let's find out!!
_________________________________
★ Solution :-
\sf :\implies 3 tan^2\theta-4\sqrt{3}tan\:\theta+3=0:⟹3tan
2
θ−4
3
tanθ+3=0
\sf :\implies 3 tan^2\theta-3\sqrt3 tan\:\theta-\sqrt3 tan\:\theta+3=0:⟹3tan
2
θ−3
3
tanθ−
3
tanθ+3=0
\sf:\implies 3tan\:\theta(tan\:\theta-\sqrt3)-\sqrt3(tan\:\theta-\sqrt3)=0:⟹3tanθ(tanθ−
3
)−
3
(tanθ−
3
)=0
\sf:\implies(tan\:\theta-\sqrt3)(3tan\theta-\sqrt3)=0:⟹(tanθ−
3
)(3tanθ−
3
)=0
\sf:\implies tan\theta=\sqrt 3,\dfrac{\sqrt3}{3}:⟹tanθ=
3
,
3
3
\sf:\implies tan\theta=\sqrt3,\dfrac{ 1}{\sqrt3}:⟹tanθ=
3
,
3
1
Now we have obtained 2 values of tan theta.
We know that tan60°=√3 and tan30°=\dfrac{1}{\sqrt3}
3
1
.
So the possible values of theta are 30° and 60°.
Here I have used middle term splitting for finding value of tan theta, you can also use quadratic formula for finding it.
_________________________________
Trigonometry ratios:
\begin{gathered}\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}\end{gathered}