If √3 tan Theta =1 then find the value of sin2 theta - cos 2 theta
Answers
Answered by
4
Given:-
- √3 tanθ = 1
To Find:-
- The value of sin²θ - cos²θ
Solution:-
We have,
√3 tanθ = 1
⇒ tanθ = 1/√3
From Trigonometric table we know,
- 1/√3 = tan30°
Hence, we can write,
- tanθ = tan30°
On comparing both sides we get,
θ = 30°
∴We got the value of θ = 30°
We need to find the value of sin²θ - cos²θ
Putting the value of θ = 30°
We have,
sin²30° - cos²30°
From trigonometric table we have:-
- Sin30° = 1/2
- Cos30° = √3/2
Putting respective values:-
(1/2)² - (√3/2)²
⇒ 1/4 - 3/4
⇒ (1 - 3)/4
⇒ -2/4
⇒ -1/2
∴ The value of sin²θ - cos²θ is -1/2.
______________________________________
Trigonometric Table:-
______________________________________
Anonymous:
Nice
Similar questions