Math, asked by chinnu9466, 5 months ago

If √3 tan Theta =1 then find the value of sin2 theta - cos 2 theta​

Answers

Answered by Anonymous
4

Given:-

  • √3 tanθ = 1

To Find:-

  • The value of sin²θ - cos²θ

Solution:-

We have,

√3 tanθ = 1

⇒ tanθ = 1/√3

From Trigonometric table we know,

  • 1/3 = tan30°

Hence, we can write,

  • tanθ = tan30°

On comparing both sides we get,

θ = 30°

We got the value of θ = 30°

We need to find the value of sin²θ - cos²θ

Putting the value of θ = 30°

We have,

sin²30° - cos²30°

From trigonometric table we have:-

  • Sin30° = 1/2
  • Cos30° = 3/2

Putting respective values:-

(1/2)² - (√3/2)²

⇒ 1/4 - 3/4

⇒ (1 - 3)/4

⇒ -2/4

⇒ -1/2

The value of sin²θ - cos²θ is -1/2.

______________________________________

Trigonometric Table:-

{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

______________________________________


Anonymous: Nice
Anonymous: Thanka! :D
Similar questions