If 3 tan theta = 4 find the value of 5 sin theta - 3 cos theta/5 sin theta + 2 cos theta
Answers
Answered by
4
solution:
5tan\theta=4
tan\theta=4/5
=perpandicular/base
therefore,
hypotenuse=\sqrt{base^2+perpendicular^2}
=\sqrt{5^2+4^2}
=\sqrt{25+16}=\sqrt{41}
sin\theta=4/\sqrt{41}
cos\theta=5/\sqrt{41}
then,
\frac{5sin\theta-3cos\theta}{5sin\theta+2cos\theta}=\frac{5*4/\sqrt{41}-3*5/\sqrt{41}}
{5*4/\sqrt{41}+2*5/\sqrt{41}
}
=\frac{5/\sqrt{41}}{30/\sqrt{41}}
=5/30=1/6
Answered by
1
Similar questions