Math, asked by dmehar348, 11 months ago

if 3 tan theta equal to 4 then write the value of tan theta + cot theta​

Answers

Answered by Shreya091
132

\huge{\boxed{\boxed{\mathfrak{\red{Answer:-}}}}}

{\bold{\underline{\underline{Given:-}}}}

\to\ 3Tanθ =4

{\bold{\underline{\underline{To \: find :-}}}}

\to\ Tanθ+cotθ

{\bold{\underline{\underline{Solution :-}}}}

\implies\ 3Tanθ=4 \\ \\ \implies\ Tanθ = 3/4

Also;

\implies\cotθ = \frac {1}{Tanθ} \\ \\ \implies\ cotθ= \frac {1}{3/4} \\ \\ \implies\ cotθ= \frac{3}{4}

Now,

\implies\ Tanθ + cotθ= ? \\ \\ \implies\ 4/3 +3/4 \\ \\ \implies\ 16+  9/12\\ \\ \implies\ \frac {25}{12}

\mathbb\pink{Thanks....}

Answered by harendrachoubay
1

The value of \tan \theta+\cot \theta=\dfrac{25}{12}

Step-by-step explanation:

We have,

3\tan \theta=4

\tan \theta=\dfrac{4}{3}

To find, the value of \tan \theta+\cot \theta=?

\tan \theta+\cot \theta

=\tan \theta+\dfrac{1}{\tan \theta}

Using the trigonometric identity,

\cot \theta=\dfrac{1}{\tan \theta}

Put \tan \theta=\dfrac{4}{3}, we get

=\dfrac{3}{4} +\dfrac{1}{\dfrac{3}{4}}

=\dfrac{3}{4} +\dfrac{4}{3}

=\dfrac{9+16}{12}

=\dfrac{25}{12}

The value of \tan \theta+\cot \theta=\dfrac{25}{12}

Similar questions