Math, asked by bang136, 3 months ago

if 3 tan x = 4
Find 8 sinx-3cosx ÷ 8sinx+ 3cos x

Answers

Answered by Swapnilbro
1

Answer:

Step-by-step explanation:

If you know the value values of sides of right angled triangle and can represent t you can easily ve grip over these questions.

Attachments:
Answered by tennetiraj86
1

Step-by-step explanation:

Given:-

3 tan x = 4

To find:-

if 3 tan x = 4 ,Find 8 sinx-3cosx ÷ 8sinx+ 3cos x

Solution:-us

Method-1:-

Given that

3 tan x = 4

=> tan x = 4/3

Now the value of 8 sinx-3cosx ÷ 8sinx+ 3cos x

(8 Sin x - 3 Cos x)/(8 Sin x + 3 Cos x)

On dividing numerator and the denominator by Cos x

=>[8 Sin x - 3 Cos x)]/Cos x /[(8 Sin x + 3 Cos x)]/ Cos x

=> (8 Sin x/Cos x ) -(3 Cos x/Cos x) /

[(8 Sin x / Cos x)+3 Cos x/Cos x)]

=> (8 tan x - 3)/(8 tan x+ 3)

=>[8(4/3)-3]/[8(4/3)+3]

=>[(32/3)-3]/[(32/3)+3]

=>[(32-9)/3]/[(32+9)/3]

=>(23/3)/(41/3)

=>(23/3)×(3/41)

=>23/41

Method -2:-

Given that

3 tan x = 4

=> tan x = 4/3 ------(1)

=>Sin x/Cos x = 4/3

=>3 Sin x = 4 Cos x

=> Cos x = 3 Sin x/4

On multiplying with 2 both sides

=>8 Cos x = 6 Sin x----(2)

Now

8 sinx-3cosx ÷ 8sinx+ 3cos x

=> [8 Sin x - 3 (3/4) sin x ]/[ 8 Sin X + 3(3/4) Sin x]

=>[8 Sin x- (9/4) Sin x ]/[8 Sin x +(9/4 ) Sin x]

=>[(32 Sin x-9 Sin x)/4]/[(32 Sin x+9 Sin x)/4]

=>(23 Sin x/4)/(41 Sin x/4)

=>23 Sin x/41 Sin x

=>23/41

The answer = 23/41

Answer:-

The value of 8 sinx-3cosx ÷ 8sinx+ 3cos x is 23/41

Used formulae:-

  • Tan A = Sin A/ Cos A
Similar questions