if 3 tan x = 4
Find 8 sinx-3cosx ÷ 8sinx+ 3cos x
Answers
Answer:
Step-by-step explanation:
If you know the value values of sides of right angled triangle and can represent t you can easily ve grip over these questions.
Step-by-step explanation:
Given:-
3 tan x = 4
To find:-
if 3 tan x = 4 ,Find 8 sinx-3cosx ÷ 8sinx+ 3cos x
Solution:-us
Method-1:-
Given that
3 tan x = 4
=> tan x = 4/3
Now the value of 8 sinx-3cosx ÷ 8sinx+ 3cos x
(8 Sin x - 3 Cos x)/(8 Sin x + 3 Cos x)
On dividing numerator and the denominator by Cos x
=>[8 Sin x - 3 Cos x)]/Cos x /[(8 Sin x + 3 Cos x)]/ Cos x
=> (8 Sin x/Cos x ) -(3 Cos x/Cos x) /
[(8 Sin x / Cos x)+3 Cos x/Cos x)]
=> (8 tan x - 3)/(8 tan x+ 3)
=>[8(4/3)-3]/[8(4/3)+3]
=>[(32/3)-3]/[(32/3)+3]
=>[(32-9)/3]/[(32+9)/3]
=>(23/3)/(41/3)
=>(23/3)×(3/41)
=>23/41
Method -2:-
Given that
3 tan x = 4
=> tan x = 4/3 ------(1)
=>Sin x/Cos x = 4/3
=>3 Sin x = 4 Cos x
=> Cos x = 3 Sin x/4
On multiplying with 2 both sides
=>8 Cos x = 6 Sin x----(2)
Now
8 sinx-3cosx ÷ 8sinx+ 3cos x
=> [8 Sin x - 3 (3/4) sin x ]/[ 8 Sin X + 3(3/4) Sin x]
=>[8 Sin x- (9/4) Sin x ]/[8 Sin x +(9/4 ) Sin x]
=>[(32 Sin x-9 Sin x)/4]/[(32 Sin x+9 Sin x)/4]
=>(23 Sin x/4)/(41 Sin x/4)
=>23 Sin x/41 Sin x
=>23/41
The answer = 23/41
Answer:-
The value of 8 sinx-3cosx ÷ 8sinx+ 3cos x is 23/41
Used formulae:-
- Tan A = Sin A/ Cos A