Math, asked by abhinavdixit978, 1 year ago

if √3 tanA= 2sinA then find the value of sin^2A-cos^2A​

Answers

Answered by ihrishi
2

Step-by-step explanation:

 \sqrt{3} \:  tanA = 2 sin A \\   \sqrt{3}  \:  \: \frac{sin A}{cos A} = 2 sin A \\  \frac{ \sqrt{3} }{cos A}  = 2 \\   \frac{ 1}{cos A}  =  \frac{2}{\sqrt{3} }  \\ cos A =  \frac{ \sqrt{3} }{2}  \\ cos A = cos 30 \degree  \\ A = 30 \degree  \\ now \\  {sin}^{2} A - {cos}^{2} A \\  = {sin}^{2}  30 \degree - {cos}^{2}  30 \degree \\  = ( \frac{1}{2} )^{2}  -  ( \frac{ \sqrt{3} }{2} )^{2}  \\  =  \frac{1}{4}  -  \frac{3}{4}  \\  =  \frac{1 - 3}{4}  \\  =  \frac{ - 2}{4}  \\  =  -  \frac{1}{2}  \\

Similar questions