If 3 tanA= 4, then prove that underoot 1-sinA divided by 1+cosA = 1 divided 2 root2
Answers
Answer:
3tanA=4
or, tanA=4/3=p/b
Using Pythagorus theorem, h²=p²+b² we get,
h²=4²+3²
or, h²=16+9
or, h²=25
or, h=5 (neglecting the negative sign)
∴, secA=h/b=5/3 and cosecA=h/p=5/4
i) √secA-cosecA/√secA+cosecA
=√(5/3-5/4)/(5/3+5/4)
=√(5/12)/√(35/12)
=√(5/12×12/35)
=√1/7
ii) 1-sinA/1+cosA
=(1-4/5)/(1+3/5)
={(5-4)/5}/{(5+3)/5}
=(1/5)/(8/5)
=1/5×5/8
=1/8
Step-by-step explanation:
Answer:
Step-by-step explanation:
We are given that
3tanA = 4
tanA = 4/3
To prove
√(1–sinA)/√(1+cosA) = 1/2√2
Proof
tanA = opposite/adjacent
tanA = sinA/cosA
By pythagorean theorem we can find the hypotenuse
(Height)^2+(Base)^2=(Hypotenuse)^2
(3)^2+(4)^2 = (Hypotenuse)^2
9+16 = (Hypotenuse)^2
25 = (Hypotenuse)^2
Hypotenuse = √25
Hypotenuse = 5
sinA = 4/5
cosA = 3/5
LHS RHS
√(1–sinA)/√(1+cosA) = 1/2√2
LHS :
√(1–4/5)/√(1+3/5)
=> √{(5–4)/5}/√{(5+3)/5}
=> √(1/5)/√(8/5)
=> √1/5×5/8
=> √1/8
=> 1/2√2. (Because 8 = √4×√2)
Hence proved
Hope this helps you